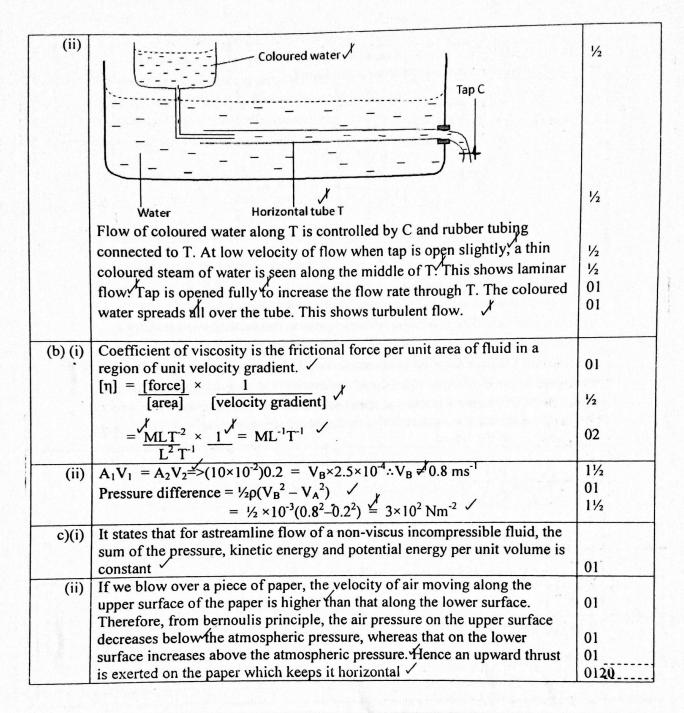


JINJA JOINT EXAMINATION BOARD 2019

MOCK EXAMINATIONS P510/1 PHYSICS

MARKING GUIDE

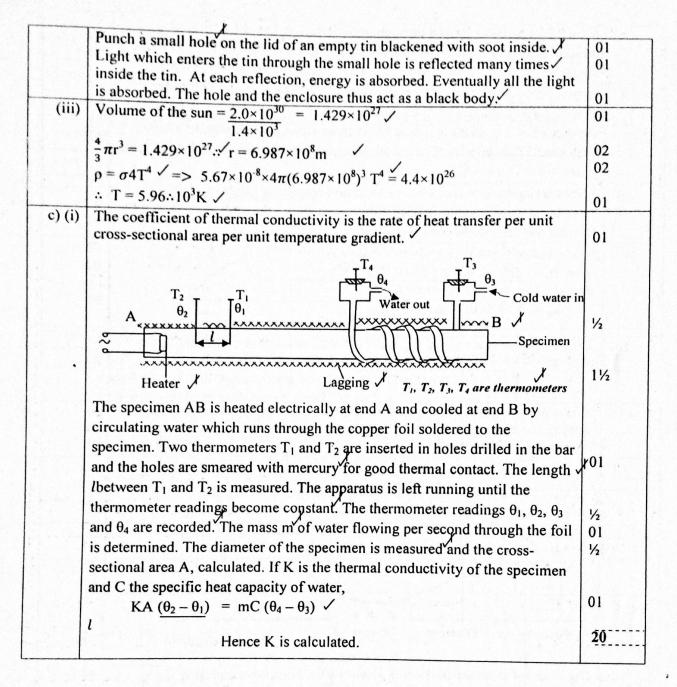

Nex	Solutions	Marks
(a)	Everybody continues in its state of rest or in uniform motion unless acted upon by an external force 🗸	01
	The rate of change of momentum of a body is proportional to the applied force and takes place in the direction of the force.	01
	- To every action, there is an equal and opposite reaction	01
(b)(i)	If no external forces act on a system of colliding objects, then their total momentum remains constant.	01
(ii)	Before collisionAfter collision (m2) - (m2) - (m2) - (m2) - (m3)	
	F = m(v - u)/t second Law	01
	F = m(v - u)/tsecond Law $VF_{21} = m_1(v_1 - u_1)/t F_{12} = m_2(v_2 - u_2)/t$	01
	$F_{21} = -F_{12} \mathcal{J}$ third Law \mathcal{J}	01
	$m_1(v_1-u_1) = -m_2(v_2-u_2) $	1/2
	$\Leftrightarrow m_1(v_1-u_1) + m_2(v_2-u_2) = m_1(v_1-u_1) + m_2(v_2-u_2)$	1/2
(c)(i)	Resolving momentum vertically $0 = 0.1v_1\sin 30 - 0.1v_2\sin 30$ $0.1 v_2\sin 30 = 0.1v_1\sin 30$ $\Leftrightarrow v_2 = v_1$	01
	Resolving momentum horizontally	
	$0.1 \times 10 = 0.1 v_1 \cos 30 + 0.1 v_2 \cos 30$	01
	$1 = 0.2 v1 \cos 30$ $z v_1 = 1$	1/2
	0.2cos30	1/2
	- 6 99	1
	k.e before collision = $\frac{1}{2}$ mu ² = $\frac{1}{2}$ ×0.1×10 ² = 5J	1 1/2
	k.e after collision = $2[\frac{1}{2} \times 0.1(5.77)^2]^{\frac{1}{2}} = 3.33J$	11/2
	The collision is not elastic since the kinetic energy is not conserved.	1/2
(d)	Weightlessness is a condition of a body where the weight of a body equals	1/2
	the reaction of the support on which the body is. This implies that the	1/2
	resultant force on the body is zero.	01
	There the body will have no tendency to rise up or sink down.	01
	times are onely attribute to tenneral in use ab of sure douter.	20

(-) (i) [A planet is an astronomical body orbiting the sun	01
	my the allineed about the suit as one today.	01
	the planet giveens out equal areas in equal times.	01
	The squares of the periods of revolution of the planets are proportional to	01
	the cubes of their mean distances from the sun	01
	$\frac{mv^2}{r_0} = \frac{GM_m \cdot v}{r_0^2} k.e = \frac{1}{2} mv^2 = GM_m $ $v = \int_{\infty}^{r_0} \frac{GMm \partial r}{r^2 r_0 r_0} = -GM_m \stackrel{f}{=} \text{p.e of } m = -GM_m $	11/2
	Total energy in orbit = $\frac{GM_m^v}{r_o} + \frac{GM_m}{2r_or_o} = -\frac{GM_m}{\sqrt{2r_or_o}}$	1½
(ii)	$\frac{GM_m}{2r}$ $\frac{GM_m}{2r_o}$ $\frac{1}{\sqrt{r}}$ these two quantities are the kinetic energy values in the respective orbits of radius rand r_o . Hence the kinetic	1/2
	energy of the satellite increases. But the potential energy decreases by	1
•	twice as much as the kinetic energy. Therefore there is loss of energy in form of heat. From the law of conservation of energy;	11/2
	The total energy = p.e + k.e. + heat energy. $$	1/2
	Since heat loss is very small, a decrease in p.e. results in a net increase in	1/2
	k.e. Hence the speed of the satellite progressively increases as it comes	01
	closer and closer to the earth. $r = (R+h) = (6.4 \times 10^6 + 0.5 \times 10^6) = 6.9 \times 10^6$	1/2
c)	$\frac{\text{mv}^2}{\text{r}} = \frac{\text{GM}_{\text{m}}}{\text{r}^2} \cdot \text{k.e} = \frac{1}{2} \text{mv}^2 = \text{GM}_{\frac{\text{m}}{\text{m}}} = \frac{\text{GM}_{\frac{\text{m}}{\text{m}}}}{2\text{r}} = \frac{\text{GM}_{\frac{\text{m}}{\text{m}}}}{2(\text{R+h})}$ $=> \text{k.e} = \frac{6.67 \times 10^{-11} \times 300 \times 5.97 \times 10^{24}}{2 \times 6.9 \times 10^6} = 8.657 \times 10^9 \text{ J}$	
		11/2
	p.e. = $-\frac{f}{GM_m} = \frac{6.67 \times 10^{-11} \times 300 \times 5.97 \times 10^{24}}{6.9 \times 10^6} = -1.7313 \times 10^{10} \text{J}$	02
	Total energy = k.e + p.e = $8.657 - 1.7313 = -8.657 \times 10^9 \text{J}$	01
d)	Because of the very small value of the gravitational constant G, the	01
	gravitational force between bodies of ordinary mass is extremely small.	01
	Hence their acceleration is too small to cause any noticeable motion.	01
		20

3.(a)(i)	The surface tension is the work done in increasing the surface area by 1m ² under isothermal conditions.	01
(ii)	Surface tension decreases with increase in temperature. Therefore the	1/2
. ,	surface tension of the hot soap solution is less than that of the cold soap	01
	solution. Consequently, the hot soap solution penetrates more into the	01
	pores of the fabric, thus increasing cleansing action of soap.	1/2

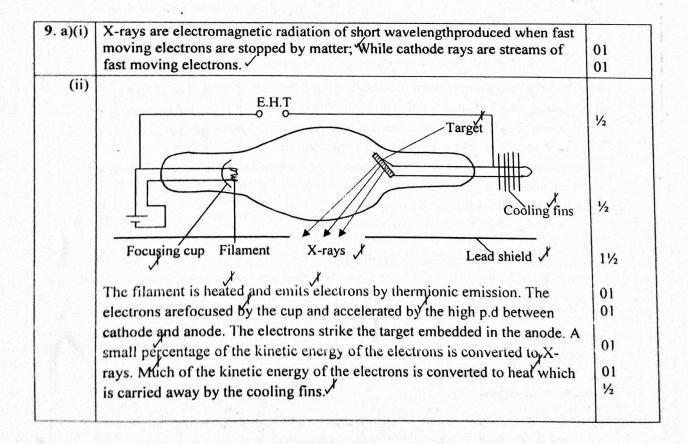
(b)(i)	Angle of contact is the angle between the solid surface and the tangent to	
	the liquid meniscus measured through the liquid. 🗸	01
(ii)	Travelling Capillary tube	02
	Liquid	
	A clean capillary tube is supported vertically with its lower end dipping in	1/2
	the liquid. A pin bent at right angles in two places is attached to the	1/2
	capillary tube using a rubber band and is adjusted so that its tip just touches the liquid surface, The travelling microscope is first focused on the bottom	1/2
	of the meniscus in the tube and then on the tip of the pin when the beaker	01
	is removed. Column length h is obtained. The diameter of the capillary is	1/2
•	measured at three different places, and the average radius robtained.	1/2
	If the angle of contact θ is known, then the surface tension is given by $\gamma = \frac{1}{2\cos\theta}$ Where g is the acceleration due to gravity and ρ is the density of the liquid	1/2
(c)		
	$P_1 = P_2$ $P_1 = P_2 = P_2 = P_2$ $P_1 = P_2 $	01
	$P_1\pi r^2 + 2\pi r \gamma + P_2\pi r^2$	0.1
	$(P_2-P_1)\pi r^2 = 2\pi r \gamma \checkmark$	01
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01
d)	$h \rho g - 2\gamma = 4\gamma = -h \times 10^3 \times 9.81 - 2 \times 7 \times 10^{-2} = 4 \times 3 \times 10^{-2}$	02
	r r 0.5×10^{-2} 0.5×10^{-2}	
	$9.81 \times 10^3 \text{h} - 280 = 24 \checkmark$	01
	$h = \underbrace{24 + 280}_{9.81 \times 10^3} = 3.06 \times 10^{-2} \text{m}$ Assuming zero angle of contact.	02
	$\overline{9.81\times10^3}$ Assuming zero angle of contact. \checkmark	01
	그 마른 생물에 하는 경험에 없었다면 안 먹어지면 하지 않게 되었다. 그 사람들은 사람들이 되었다면 하는데 하는데 되었다.	20

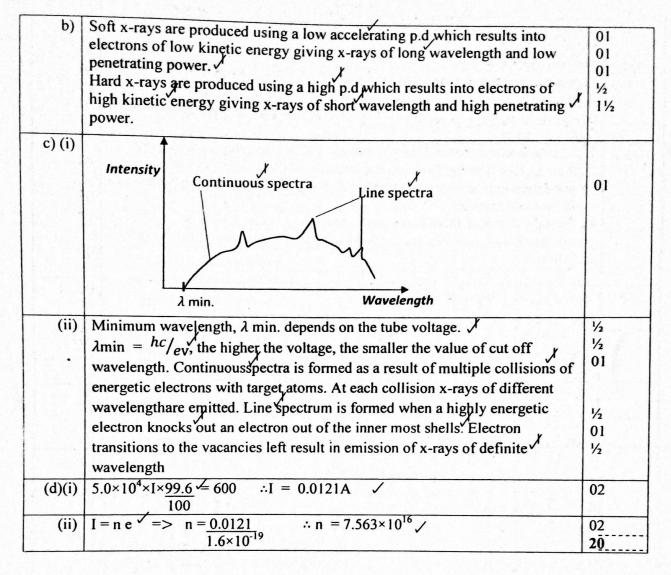
4.(a)(i)	Streamline flow is the flow in where equidistant layers from axis of flow	
	have the same velocity, flow lines are parallel and the flow is orderly.	01
	Turbulent flow is the flow in where equidistant layers from axis of flow	
	have varied velocities, flow lines are not parallel and the flow is disorderly.	01

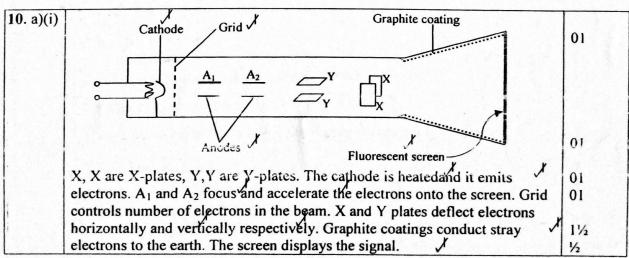


5.(a)(i)	A thermometric property is a physical quantity that varies uniformly and continuously with temperature.	01
(ii)	A fixed point is a temperature at which water changes from one state to another.	01
(b)(i)	Determine the resistance of a platinum wire at the ice point R_0 , steam point R_{100} and at the unknown temperature θ , R_{θ} ;	01 02

	Advantages: wide range, sensitive, accurate, Disadvantage: cannot measure rapidly changing temperature, cannot measure temperature at a junction. Movable tube Rubber tube The bulb is placed in contact with the body whose temperature is to be measured. The gas in the bulb expands and forces mercury up the movable	01 ½ ½ ½ ½
(c)	Disadvantage: cannot measure rapidly changing temperature, cannot measure temperature at a junction. Movable tube Rubber tube The bulb is placed in contact with the body whose temperature is to be	1/2 1/2 1/2 1/2
	Bulb gas A Rubber tube The bulb is placed in contact with the body whose temperature is to be	1/2 1/2 1/2
	Bulb gas Rubber tube The bulb is placed in contact with the body whose temperature is to be	1/2 1/2
	Bulb gas Rubber tube The bulb is placed in contact with the body whose temperature is to be	1/2
	Bulb gas Rubber tube The bulb is placed in contact with the body whose temperature is to be	1/2
	The bulb is placed in contact with the body whose temperature is to be	4
	The bulb is placed in contact with the body whose temperature is to be measured. The gas in the bulb expands and forces mercury up the movable	14
	The bulb is placed in contact with the body whose temperature is to be measured. The gas in the bulb expands and forces mercury up the movable	14
	measured. The gas in the bulb expands and forces mercury up the movable	1
	tube. The height of this tube is then adjusted to bring the mercury in the	1/2
	left hand tube to back to its original position at the fixed mark A.	1/2
	The head of the mercury h is measured and the pressure P_0 at the unknown	
	temperature θ is calculated from; $P_{\theta} = H + h$, where H is the prevailing	1/2
	atmospheric pressure. If Po and P100are the pressures at 0°C and 100°C	1/2
	respectively, the temperature of the body is calculated from	01
1		1
	$\theta = \frac{P_{\theta} - P_{o} \times 100 \text{ °C}}{P_{100} - P_{o}} $	1/2
d) 2	$273.16 \text{ K} = 273.16 - 273.15 = 0.01^{\circ}\text{C}$	1/2
- 10	600.5 K = 600.5 − 273.15 = 327.35 °C ✓	1/2
1	From $R = R_o(1 + \alpha t)$	
	$101.6 = R_o(1 + 0.01\alpha)$ (i)	01
	$165.5 = \text{Ro}(1 + 327.35\alpha)$ (ii)	01
	$= > \frac{106.6}{165.5} = \frac{R_0(1+0.01\alpha)}{R_0(1+327.35\alpha)} \checkmark <=> 0.6139 = (1+0.01\alpha)$	01
	$> 0.6139(1 + 327.35\alpha) = (1 + 0.01\alpha)$	
		01
1	$0.6139 + 200.96\alpha = 1 + 0.01\alpha : \alpha = 1.921 \times 10^{-3}$	
	From (i) $101.6 = R_0(1 + 0.01 \times 1.921 \times 10^{-3})$	
	$R_o = 101.598 \Omega$	01
	$=>123.4 = 101.598 (1 + 1.921 \times 10^{-3}t)$	01
	$1.215 = 1 + 1.921 \times 10^{-3} t$	
	∴ t≈111.9°C ✓	


.(a)(i)	Latent heat of vaporization of a liquid is the amount of heat required to convert one kilogram mass of a liquid into vapour at the same temperature	01
(11)	The liquid is heated to its boiling point. Vapour passes through the holes	1/4
	Felt lagging Hole Hole Heater to the condenser where it is condensed and collected over a known time, t. The mass	1½ 01 ½
	condensed per second m	01
	Cold water in and the ammeter reading V ₁ Cold water in and the ammeter reading I ₁ xire recoded.	% %
	=> V ₁ I ₁ = m ₁ I + h(i) where h is power loss to the surrounding and specific latent heat of vaporization. The experiment is repeated for different values of current, I ₂ and voltage V ₂ If m ₂ is mass collected per second, V ₂ I ₂ = m ₂ I + h,	1/4 1/4
	$m_2 - m_1$	01
6)	A saturated vapour is a vapour which is in a dynamic equilibrium with its own liquid. Unsaturated vapour is a vapour which is not in a dynamic equilibrium with	01
alkere province se	its own liquid.	01
d) (i)	liquid /	01
(ii)	At the boiling point, s.v.p = atmospheric pressure $P_2 = (1.14 - 1.01)10^5 = 1.3 \times 10^4$, $T_2 = 273 + 78 = 351$, $P_1 = 7$,	01 1/4 1/4
	From $P_1 = P_1 \implies P1 = 1.3 \times 10^4 \times 293 = 1.09 \times 10^4$	21/2
	1.11 / 351 1.11 / 351 1.11 / 351 1.11 / 351 1.11 / 351 1.11 / $1.09 \times 10^4 = 6.15 \times 10^3 \text{ Nm}^{-2}$	11/2 20


7.(a)(i)	A black body is a body that absorbs all radiation incident on it, reflects and transmits none	01
(11)	The sun, stars, an enclosure whose walls are blackened with a small hole	02
(iii)	Duli black Small hole Small hole	01



8. (a)	Electron in a hydrogen atom is moves in circular orbit while in this orbit it does not radiate energy. Angular momentum of the electron is an integral multiple of $h/2\pi$	01
	When a see is best of the ship to $\frac{1}{2\pi}$	
(b)	When a gas is heated to a high temperature, electron transitions occur from low to high energy levels. As electrons return to lower energy levels,	11/2
	radiation of wave lengths such $\frac{hc}{\lambda}$ equals energy difference between the	1/2
***	initial and final levels is given off. The radiation consists of a series of lines when viewed through the diffraction grating.	02

		T
c)	Most alpha particles passed through undeflected. A few are deflected	01
	through small angles less than 90°. Very few are scattered through large	01
	angles greater than 90°. Most pass through because most space in the atom is	01
	empty. Small angle scattering is because a few alpha particles are incident on	01
	atom at large distances from the nucleus. Large angle scattering is because	01
	the chance of a head on collision between an alpha particle and the nucleus is	01
	very small. This implies the nucleus occupies a small portion of the available	
	space.	
d)	The experiment is carried out in a vacuum because the range of alpha	
	particles in air is very limited, so the vacuum allows the particles to reach the	01
	foil and the detector beyond the foil.	02
e)(i)		01
	from $b_0 = Ze^2 \checkmark = \frac{79(1.6 \times 10^{-19})2}{\pi \epsilon m v^2 8.85 \times 10^{-12} \times 8 \times 10^{6} \times 1.6 \times 10^{-19}}$	02
	$\pi \epsilon \text{mv}^2 8.85 \times 10^{-12} \times 8 \times 10^{6} \times 1.6 \times 10^{-19}$	
	$b_0 = 5.683 \times 10^{-14} \mathrm{m}$	01
(ii)	The significance of nearest approach gives an estimation of the size of the	01
	nucleus.	20

(ii)	Used as a voltmeter, displays wave forms, comparing frequencies, measuring	01
	phase relationships.	01
b) (i)	The leaf gradually diverges.	01
(ii)	The leaf gradually diverges. This is because when zinc loses electrons, charge flows from leaf and plate to the zinc plate to replace electrons lost. This leaves the leaf and plate	01
	to the zinc plate to replace electrons lost. This leaves the leaf and place	01
	positively charged. The repulsion between the leaf and the plate makes the	1/2
	leef to diverge.	-
c)(i)	I the time between irradiation and emission of the electrons is negligible	01
CALL	2 photocurrent is proportional to the intensity of the includent radiation	01
	3. maximum kinetic energy of emitted electrons depends on the frequency of incident radiation.	01
	4. for a given metal, there is minimum frequency below which no photoelectric emission can occur irrespective of the intensity of the incident radiation.	01
15/15	hal	01
d)(1)	$\frac{1}{2} \text{mV}^2_{\text{max}} = \frac{nc}{\lambda} - \phi$	01
·	$\frac{1/2 \text{ mV}^2_{\text{max}} = hc/\lambda - \phi}{2} = \frac{hc}{\lambda} - \frac{1}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8 - 2 \times 1.6 \times 10^{-19}}{150 \times 10^{-9}}$ $\therefore V_{\text{max}} = 1.482 \times 10^6 \text{ ms}^{-1}$	01
(11)	$hf_o = \phi$ \Rightarrow $f_o = \frac{2 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}} = 4.85 \times 10^{14} \text{ s}^{-1}$	02
(11)	$m_0 = \phi$ -> $n_0 = \frac{2 \times 1.0 \times 10^{-34}}{6.6 \times 10^{-34}}$	20

END